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Abstract

Spatial process models for analyzing geostatistical data entail computations that become 

prohibitive as the number of spatial locations becomes large. There is a burgeoning literature on 

approaches for analyzing large spatial datasets. In this article, we propose a divide-and-conquer 

strategy within the Bayesian paradigm. We partition the data into subsets, analyze each subset 

using a Bayesian spatial process model and then obtain approximate posterior inference for the 

entire dataset by combining the individual posterior distributions from each subset. Importantly, as 

often desired in spatial analysis, we offer full posterior predictive inference at arbitrary locations 

for the outcome as well as the residual spatial surface after accounting for spatially oriented 

predictors. We call this approach “Spatial Meta-Kriging” (SMK). We do not need to store the 

entire data in one processor, and this leads to superior scalability. We demonstrate SMK with 

various spatial regression models including Gaussian processes and tapered Gaussian processes. 

The approach is intuitive, easy to implement, and is supported by theoretical results presented in 

the supplementary material available online. Empirical illustrations are provided using different 

simulation experiments and a geostatistical analysis of Pacific Ocean sea surface temperature data.
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Introduction

Increasing accessibility to computerized Geographical Information Systems (GIS) and 

related technologies have led to growing demands for analyzing massive spatially and 

temporally indexed databases on a variety of geographically-referenced outcomes. See, for 

example, the books by Gelfand et al. (2010), Cressie and Wikle (2015) and Banerjee et al. 

(2014) for a variety of methods for spatial data analysis. Gaussian processes are widely 

employed in spatial analysis, being especially attractive as a flexible and conveniently 
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interpretable spatial interpolator acting as a stochastic surrogate for the underlying physical 

processes generating the data. Today, a primary challenge in geostatistics is the analysis of 

massive spatially-referenced data. This stems from the onerous Gaussian likelihood 

computations involving matrix factorizations (e.g., Cholesky) and determinant computations 

for large spatial covariance matrices that have no computationally exploitable structure. This 

is referred to as the “Big-N” problem in spatial statistics.

There is a burgeoning literature on the analysis of large spatial datasets which is too large to 

be comprehensively reviewed here. Briefly, these methods seek “dimension-reduction” by 

endowing the spatial covariance matrix either with a low-rank structure or with a sparse 

structure. Low-rank structures are usually derived from expressing the Gaussian process 

using basis functions such as fixed-rank kriging (Cressie and Johannesson (2008)), or 

predictive processes and variants thereof (e.g., Banerjee et al. (2008); Finley et al. (2009); 

Guhaniyogi et al. (2011); Sang and Huang (2012)) and multi-resolution approximations 

(e.g., Katzfuss (2016)). Wikle (2010) and Banerjee et al. (2014) provide more 

comprehensive reviews. Sparse structures intuit that spatial correlation between two distantly 

located observations is nearly zero, so little information is lost by assuming conditional 

independence given the intermediate locations. For example, covariance tapering (Furrer et 

al. (2012), Kaufman et al. (2008), Du et al. (2009), Shaby and Ruppert (2012)) uses 

compactly supported covariance functions to create sparse spatial covariance matrices that 

approximate the full covariance matrix. Alternately, one could introduce sparsity in the 

inverse covariance (precision) matrix using conditional independence assumptions or 

composite likelihoods (e.g., Vecchia (1988); Rue et al. (2009); Stein et al. (2004); Eidsvik et 

al. (2014); Datta et al. (2015); Stroud et al. (2017); Guinness (2016)). In related literature 

pertaining to computer experiments, localized approximations of Gaussian process models 

are proposed, see for e.g. Gramacy and Apley (2015), Zhang et al. (2016) and Park and 

Apley (2017).

Some variants of dimension-reduction methods partition the spatial domain into sub-regions 

containing fewer spatial locations. Each of these subregions is modeled using Gaussian 

processes which are then hierarchically combined by borrowing information from across the 

subregions. Examples include non-stationary models (Banerjee et al. (2014)), multi-level 

and multi-resolution models (Gelfand et al. (2007); Nychka et al. (2015); Katzfuss (2016)) 

and the Bayesian Treed Gaussian Process models (Gramacy and Lee (2012)). These models 

usually achieve scalability by assuming block-independence at some level of the hierarchy, 

usually across subregions, but lose scalability when they borrow across sub-regions. 

Furthermore, the models and the inference are usually very sensitive to the specific partition 

adopted for the model.

Most existing methods for large spatial data are based upon approximations of the single 

Gaussian likelihood. Our current offering differs from these methods, and hence the 

aforementioned work, by focusing upon pooling posterior inference across a partition of data 

subsets. In some simple cases, for example with conjugate Bayesian linear regression 

models that we will revisit in a later section, one can exactly recover full posterior inference. 

However, such exact recovery is precluded for spatial and spatiotemporal process models 

and, more generally, for correlated data. Our objective is to develop a general approximation 
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framework for obtaining the full posterior from posterior densities calculated over smaller 

subsets. The posteriors from various subsets (also known as “subset posteriors”) are 

combined to yield a single posterior distribution (the “meta-posterior”) for the model 

parameters. Thus, we conduct a “meta-analysis” of the different datasets and also provide 

pooled posterior predictive inference for the spatial surface at arbitrary locations. We coin 

this as “spatial meta-kriging or SMK.” To achieve this, we adapt the notion of a geometric 

median of a subset posterior (see, e.g., Minsker et al. (2014)). Unlike Minsker et al. (2014) 

who developed predictive models for independent data, we perform full Bayesian inference 

on each of the subsets using spatial process models. We obtain posterior samples for the 

process parameters and spatial random effects and derive the meta-posterior for the Bayesian 

model. This approach can be used to considerably enhance the computational scalability of 

other Bayesian models for large spatial data. Once the post-burnin samples are stored for 

these models, sampling from the meta-posterior is extremely fast. For example, if it is 

feasible to estimate spatial process models to each subset of the data for n locations and one 

can run them on K subsets in parallel, then SMK will allow us to draw inference on nK 
locations. The values of n and K will depend upon the computational resources available and 

the model being fit to each dataset.

The manuscript follows this outline. In Section 2.1 we motivate the approach in conjugate 

non-spatial linear model. Our SMK approach will work with posterior samples from such 

models. Section 2.2 develops the framework for “Spatial Meta Kriging (SMK)” and 

discusses how to compute it. A detailed simulation study followed by a large data analysis is 

performed in Section 3 to justify usage of SMK for real data. Finally, Section 4 discusses 

what SMK achieves, and proposes a number of future directions to explore. Theoretical 

developments, including results on posterior consistency for the proposed SMK approach 

applied to Gaussian and tapered Gaussian process models are described in the Web 

Supplement.

Pooled Bayesian Inference

Conjugate Bayesian linear model

For some simple Bayesian models, one can exactly recover the posterior distributions of the 

parameters based upon quantities computed for subsets of the data. For example, consider 

the conjugate Bayesian Gaussian linear regression model

y = Xβ + ε; ε N(0, σ2D), (1)

where y is an N×1 random vector of outcomes, X is a fixed N×p design matrix of 

explanatory variables, β is an unknown p × 1 vector of slopes, D is a fixed N × N correlation 

matrix for y. This is extended to a Bayesian hierarchical model by assigning prior 

distributions β|σ2 ∼ N(µβ, σ2Vβ), and σ2 ∼ IG(a, b). The joint posterior density p(β, σ2|y) is 

available in closed form as p(β, σ2|y) = p(σ2|y) × p(β|σ2, y), where the marginal posterior 

density p(σ2|y) = IG(σ2|a*, b*) and the conditional posterior density p(β|σ2, y) = N(β|Mm, 

σ2M) with a* = a + N/2, b* = b + c/2, m = V β
−1μβ + X⊤D−1y, M−1 = V β

−1 + X⊤D−1X and 
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c = μβ
⊤V β

−1μβ + y⊤D−1y − m⊤Mm. Therefore, exact posterior inference can be carried out by 

first sampling σ2 from IG(a*, b*) and then sampling β from N(Mm, σ2M) for each sampled 

value of σ2. This results in samples from p(β, σ2|y). Besides the fixed hyperparameters in 

the prior distributions, this exercise requires computing m, M and c.

Now consider a situation where N is large enough so that memory requirements for 

computing (1) is unfeasible. One possible resolution is to replace the likelihood in (1) with a 

composite likelihood that assumes independence across blocks formed by partitioning the 

data. We partition the N × 1 vector y into K subvectors with yk as the nk× 1 subvector 

forming the k-th subvector, where ∑k = 1
K nk = N. Also, let Xk be the nk × p matrix of 

predictors corresponding to yk and let Dk be the marginal correlation matrix for yk. The 

conjugate Bayesian model with a block-independent composite likelihood assumes that

yk = Xkβ + εk; εk
indN(0, σ2Dk) . (2)

The Bayesian specification is completed by assiging priors to σ2 and β as in (1). If we 

distribute the analysis to K different computing cores, where the k-th core fits the above 

model but only with the likelihood N(yk|Xkβ, σ2Dk), then the quantities needed for sampling 

from the full p(β, σ2|y) can be computed entirely using quantities obtained from the 

individual subsets of the data. For each k = 1, 2, …, K we independently compute 

mk = V β
−1μβ + Xk

⊤Dk
−1yk and Mk

−1 = V β
−1 + Xk

⊤Dk
−1Xk based upon the k-th subset of the data. 

We then combine them to obtain m = ∑k = 1
K (mk − (1 − 1/K)V β

−1μβ) and 

M−1 = ∑k = 1
K (Mk

−1 − (1 − 1/K)V β
−1). Subsequently, we compute 

c = μβ
⊤V β

−1μβ + ∑k = 1
K yk

⊤Dk
−1yk − m⊤Mm. Therefore, sampling from the posterior 

distribution of β and σ2 given the entire dataset can be achieved using quantities computed 

independently from each of the K smaller subsets of the data. There is no need to interact 

between the subsets and one does not require to store or compute with large objects based 

upon the entire dataset.

This strategy will be efficient when the composite likelihood in (2) is a reasonable 

approximation for (1). In fact, for independent data modeled using D as an N × N identity 

matrix or a diagonal matrix, (1) and (2) are equivalent and the above method will exactly 

recover the inference from fitting the full model in (1) irrespective of how we partition the 

data. With correlated data, however, D is a non-diagonal correlation matrix and the 

analytical tractability above is lost. The composite likelihood in (2) is now only an 

approximation for (1) and will no longer be able to exactly recover the inference from (1). 

For finite sample inference, the performance of (2) may not be satisfactory and will depend 

upon a number of factors including how we partition the data. In the next section we discuss 

a computationally efficient algorithm to achieve accurate and robust inference by pooling 

posterior samples from the subsets of the data and subsequently apply this to spatially 

indexed data.
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Pooled Bayesian inference for spatial models

Consider a customary spatial regression model given by

y(s) = x⊤(s)β + w(s) + ε(s), (3)

where x(s) is a p×1 vector of spatially referenced predictors, β is a p×1 vector of regression 

coefficients, w(s) is a stochastic process capturing spatial dependence, while ε(s) captures 

variation at fine scales including those arising from measurement error. Customary 

specifications posit w(s) is a zero-centered spatial Gaussian process with a covariance 

function Cθ(s, s′) modeling cov{w(s), w(s′)} and ε(s) is a white-noise process independent 

of w(s). Given a set of locations 𝒮 = si: i = 1, 2, …, N  where y(s) and x(s) have been 

observed, the spatial regression in (3) is extended to a hierarchical linear mixed model 

framework

y = Xβ + w + ε, ε N(0, D(θ)), (4)

where y, w and are N ×1 vectors with elements y(si), w(si) and ε(si), respectively, X is the N 
× p matrix of regressors (p < N) with x⊤(si) as its i-th row, D(θ) is an N × N covariance 

matrix corresponding to ε, w ∼ N(0, C(θ)), C(θ) is the N ×N spatial covariance matrix with 

entries Cθ(si, sj), β ∼ N(µβ, Σβ) is the prior distribution for the slope vector, µβ and Σβ are 

assumed fixed, θ is a set of unknown parameters specifying the distributions for w and ε and 

is assigned a proper prior distribution p(θ). Though C(θ) and D(θ) are functions of different 

subsets of θ, we present both of them as functions of θ to avoid notational complications. 

Note that here we do away with the conjugacy in Section 2.1, so Bayesian inference 

proceeds, customarily, by sampling Ω = {β, θ} from (4) using Markov chain Monte Carlo 

(MCMC) methods (e.g., Robert and Casella (2009)).

Fitting the model in (4) entails matrix computations involving C(θ) and D(θ). While D(θ) is 

often specified as a diagonal (or sparse) matrix, e.g., τ2I which will arise by specifying 

ε(s)iidN(0, τ2), the spatial covariance matrix C(θ) is a dense N × N matrix. Irrespective of the 

specific parametrization or estimation algorithm, model fitting usually involves matrix 

decompositions for C(θ) requiring ∼ N3 floating point operations (flops) and ∼ N2 memory 

units in storage. These become prohibitive for large N since C(θ), in general, has no 

exploitable structure. Evidently, multivariate and spatial-temporal settings aggravate the 

situation.

Let the data be partitioned into {yk, Xk}, for k = 1, 2, …, K, where each yk is nk×1 and Xk is 

nk ×p. Let Dk(θ) and Ck(θ) correspond to the k-th subset of the data. Assume that we are 

able to obtain posterior samples for Ω = {β, θ} from (4) applied independently to each of K 

subsets of the data. To be specific, assume that Ωk = Ωk
(1), Ωk

(2), …, Ωk
(M)  is a collection of M 

posterior samples from p(Ω|yk). We refer to each p(Ω|yk) as a “subset posterior”. The subset 

posteriors are computed from subsets of the data and posterior inference from one subset 

will be substantially different from another. This is especially true for block-independent 
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spatial models when the blocks (subsets) may not adequately represent the entire random 

field. One approach is to design partitions of the data that will ensure the block independent 

model is a good approximation to the full spatial model. This, however, is generally difficult 

to achieve and will depend upon the dataset. The meta-kriging approach we outline below 

should be more widely applicable. It attempts to combine meaningfully, the subset posteriors 

to arrive at a legitimate probability density. We will refer to this as the “meta-posterior” and 

will tend to be more immune to the drawbacks of pooled inference using block-independent 

models.

Our approach relies upon the unique Geometric Median (GM) of the subset posteriors 

(Minsker (2015) and Minsker et al. (2014)). Assume that the individual posterior densities 

pk ≡ p(Ω|yk) reside on a Banach space ℋ equipped with norm ‖ · ‖. The GM is defined as

π∗( ⋅ | y) = arg min
π ∈ ℋ ∑

k = 1

K
pk − π

ρ
, (5)

where y = (y1
⊤, y2

⊤, …, yK
⊤)⊤. The norm quantifies the distance between any two posterior 

densities π1(·) and π2(·) as π1 − π2 ρ
= ∫ ρ(Ω, ⋅ )d(π1 − π2)(Ω) , where ρ(·) is a positive-

definite kernel function. In what follows, we assume ρ(z1, z2) = exp(−‖z1 – z2‖2).

Algorithm 1

Algorithm to compute Geometric Median (GM) of posterior distributions.

a.
Initial Condition: αρ, k

(0) (y) = 1
K .

b. For m ≥ 1

 i. mth iteration of αρ, k
(m)(y) is given by αρ, k

(m)(y) =
pk − π ∗ (m − 1)

ρ
−1

∑k = 1
K pk − π ∗ (m − 1)

ρ
−1 .

 ii. mth iterate of π* (denoted as π*(m)) is given by π ∗ (m) = ∑k = 1
K αρ, k

(m)(y)pk.

  Note that the posterior pk is approximated by the corresponding empirical posterior 
1
M ∑ j = 1

M 1
Ωk

( j) so that 

π*(m−1) is approximated by 
1
M ∑k = 1

K ∑ j = 1
M αρ, k

(m − 1)(y)1
Ωk

( j).

c. Stopping Condition: Iteration proceeds until ‖π*(m) − π*(m−1)‖ρ < φ, where φ is a user-specified tolerance level.

The GM is unique and lies in the convex hull of the individual posteriors, so π*(Ω|y) is a 

legitimate probability density. Specifically, π∗(Ω y) = ∑k = 1
K αρ, k(y)pk, ∑k = 1

K αρ, k(y) = 1, 

each αρ,k(y) being a function of ρ, y, so that ∫ Ωπ∗(Ω y)dΩ = 1.
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Computing the GM π* ≡ π*(Ω|y) is achieved by the popular Weiszfeld’s iterative algorithm 

that estimates αρ,k(y) from the subset posteriors pk for each k = 1, 2, …, K. To further 

elucidate, we use a well known result that the GM π* satisfies π∗ =
∑k = 1

K pk − π∗
ρ
−1

pk

∑k = 1
K pk − π∗

ρ
−1 , so 

that αρ, k(y) =
pk − π∗

ρ
−1

∑ j = 1
K pk − π∗

ρ
−1 . Since there is no apparent closed form solution for αρ,k(y) 

satisfying this equation, we resort to the Weiszfeld iterative algorithm outlined in Algorithm 

1 (Minsker et al., 2014).

A closed form expression for ‖pk − π*(m−1)‖ρ is easily obtained by referring to the formula

π1 − π2 ρ
= ∑

i = 1

M1
∑
j = 1

M1
γ1iγ1 jρ(z1i, z1 j) + ∑

i = 1

M2
∑
j = 1

M2
γ2iγ2 jρ(z2i, z2 j)

− 2 ∑
i = 1

M1
∑
j = 1

M1
γ1iγ2 jρ(z1i, z2 j),

(6)

where π1 = ∑i = 1
M1 γ1i1z1i

 and π2 = ∑i = 1
M2 γ2i1z2i

. z1i, z2i’s are dummy variables representing 

atoms of Ω, 1z1i
, 1z2i

 are indicator functions at z1i, z2i respectively. Weiszfeld’s algorithm 

yields the geometric median of points lying on a separable Banach space.

In the online supplementary material we show that for a large sample, π*(·|y) provides a 

theoretically guaranteed approximation of the full posterior distribution when error variance 

and range parameters in the Gaussian process are kept fixed. In the theoretical treatment of 

Gaussian processes, these assumptions are pretty common, see e.g Vaart and Zanten (2011). 

Note that, in the context of combining subset posteriors, one could possibly employ 

consensus Monte Carlo (Scott et al., 2016) to combine subset posteriors. While consensus 

Monte Carlo has been demonstrated to be effective for parametric models, its effectiveness 

(theoretical or empirical) is yet to be explored for nonparametric regression models such as 

the Gaussian process models discussed here.

It is, therefore, reasonable to approximate the posterior predictive distribution p(y(s0)|y) by 

the subset posterior predictive distributions p(y(s0)|yk). Let y(s0)( j, k)
j = 1
M

, k = 1, …, K, be 

samples obtained from the posterior predictive distribution p(y(s0)|yk) for the k-th subset 

posterior. Then,

p(y(s0) | y) ≈ ∑
k = 1

K
αρ, k(y)p(y(s0) | yk) = ∑

k = 1

K
αρ, k(y)∫ p(y(s0) |Ω, yk)p(Ω | yk)dΩ,
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Therefore, the empirical posterior predictive distribution of the meta posterior is given by 

∑k = 1
K ∑ j = 1

M αρ, k(y)
M 1

y(s0)( j, k), from which the posterior predictive median and the 95% 

posterior predictive interval for the unobserved y(s0) are readily available.

Regarding inference for the spatial process w(·) at arbitrary location s0, we use posterior 

samples w(s0)( j, k)
j = 1
M

 from the k-th subset posterior p(w(s0)|yk) for each k = 1, …, K. 

Again, an approximation for p(w(s0)|y) is readily available through the meta posterior

p(w(s0) | y) ≈ ∑
k = 1

K
αρ, k(y)p(w(s0) | yk) = ∑

k = 1

K
αρ, k(y)∫ p(w(s0) |Ω, yk)ρ(Ω | yk)dΩ .

Approximate posterior sampling from p(w(s0)|y) then proceeds by drawing samples from the 

empirical approximation given by ∑k = 1
K ∑ j = 1

M αρ, k(y)
M 1

w(s0)( j, k). Obtaining the 

approximate posterior median and 95% credible interval for w(s0) are now easily achieved.

Illustrations

Illustrating Weiszfeld’s algorithm for the conjugate Bayesian linear model

As described in Section 2.1, conjugate Bayesian linear models (1) yield the joint posterior 

distribution of {β, σ2} in closed-form and is easy to sample from. It is, therefore, instructive 

to see the accuracy of the approximation offered by the meta posterior of β in comparison 

with the exact posterior distribution of β. This section presents such an analysis by fitting 

both the full posterior and the meta posterior from (1) on FORMGMT data from the spBayes 

package. The FORMGMT dataset contains information on a response and 6 predictors at 1342 

locations. To evaluate the meta posterior, this dataset is divided randomly into 6 subsets 

approximately of the same size. Weiszfeld’s algorithm is then applied to the subset 

posteriors to obtain an empirical approximation of the meta posterior for each component of 

β. Table 1 demonstrates the accuracy of the meta posterior by presenting the 2.5%, 25%, 

50%, 75% and 97.5% quantiles for each component of β from the meta posterior and the 

exact full posterior. The figure shows that the quantiles of β from the meta and the exact full 

posterior are very similar. A similar story is told by the meta posterior of σ2. Performance of 

the meta posterior in non-spatial models are convincing enough to propel careful 

implementation of SMK on more general spatial process models. The next few sections lay 

them out in detail.

Simulation experiments

We use synthetic datasets to assess model performance with regard to learning about process 

parameters, interpolating the unobserved residual spatial surface and predicting at new 

locations. Though SMK potentially adapts to any spatial regression model, we confine 

ourselves to studying SMK for (i) Gaussian process based geostatistical models (GP) and (ii) 
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Gaussian process with compactly supported correlation functions (CSC). Further theoretical 

results are presented in the Web Supplementary Material.

This section presents two simulation studies. Simulation 1 is presented for moderately large 

datasets with 3, 500 locations, while Simulation 2 presents a study with 41, 000 locations. 

The moderate size in Simulation 1 allows full Bayesian implementation of the full Gaussian 

process (GP) model (without approximation) and the Gaussian process model with 

compactly supported correlation (CSC) for comparison with SMK approximations to the full 

GP (SMK-GP). For both simulations, data are generated from a standard Gaussian process 

model with the RandomFields package. Simulation 2 presents two additional case studies. 

In one of them data are generated from CSC. For this simulation, inference from SMK with 

compactly supported correlation function (SMK-CSC) model fitted to each subset is studied 

to assess how good an approximation to the full CSC is offered by SMK-CSC. In another 

simulation, samples are generated from two sides of a spatial domain keeping a hole in 

between. It would be interesting to observe how SMK-GP estimates the spatial activity on 

both sides.

Competitors—As competitors to SMK, we employ

a. locally approximated Gaussian process models (laGP) (Gramacy and Apley, 

2015). This is a state-of-the-art procedure in computer emulations and is not 

designed to provide full scale Bayesian inference. However, predictive point 

estimates with associated standard errors can readily be obtained from laGP. 

They are used to compare predictive inference including point estimates and 

uncertainties between SMK and laGP. Gramacy and Apley (2015) mention that 

laGP often outperforms nearest neighbor methods. Thus, in the absence of easily 

implementable R package/publicly available codes for nearest neighbor methods, 

comparison with laGP serves as a reasonable indicator. The laGP package 

(Gramacy, 2015) in CRAN (https://cran.r-project.org/web/packages/laGP/

index.html) is used to implement laGP.

b. Multiresolution Kriging based on Markov random fields (LatticeKrig) (Nychka 

et al., 2015). The LatticeKrig package (Nychka, Hammerling, Sain, and 

Lerud, Nychka et al.) hosted on CRAN (https://cran.r-project.org/web/packages/

LatticeKrig/index.html) offers frequentist implementations of LatticeKrig. 

Similar to laGP, predictive point estimates with associated standard errors can 

readily be obtained from LatticeKrig. We often refer to LatticeKrig as LK.

c. Block independent pooled spatial models, referred to as BISP. BISP is a two 

stage procedure. In the first stage, similar to SMK, one fits a spatial model 

independently on K exhaustive and mutually exclusive subsets of data. In the 

second stage, weighted inference is drawn based upon subset posteriors and 

weights 1/K corresponding to each subset posterior. For fair comparison between 

BISP and SMK, two models are fitted under the same subset partitioning 

scheme.

In Simulation 1 with moderately large number of data locations, we could also implement a 

full Gaussian process without any approximation and the full CSC as competitors to assess 
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the accuracy of the approximation offered by SMK-GP. However, in Simulation 2 with 41, 

000 locations, full Bayesian inference for the full Gaussian process is prohibitive and is not 

considered. Moreover, full Bayesian inference on CSC also comes with a lot of 

computational expense, primarily due to computing the determinant of the covariance matrix 

in each iteration. Therefore, the CSC model is also omitted from the bigger simulation study. 

We also implement Treed GP (Treed-GP) with the tgp package in R for Simulation 1 (not 

shown) and find that the Treed-GP’s inferential performance is less than the full GP. Treed-

GP is found to be computationally prohibitive for Simulation 2.

We consider a parallel implementation of the SMK over multiple cores. The entire analysis 

implementing parallelization is carried out in R with the doParallel (Calaway et al., 2015) 

and foreach (Analytics and Weston, 2013) packages on a Unix workstation with 64 cores. 

All the interpolated spatial surfaces are obtained using the R package MBA (Finley and 

Banerjee, 2010). All predictive inferences are based upon 25 simulated datasets.

Simulation 1

Simulation 1 is performed under moderately large sample sizes to accommodate the full GP 

model. We generate 3, 500 observations within a unit square domain from the classical 

geostatistical model with likelihood y ∼ N(β0, Vy(θ)), Vy(θ) = κ(si, s j) i, j = 1
N + τ2I, θ = {σ2, 

τ2, ϕ, ν}. For this article we will only use the exponential covariance function κ(si, sj) = σ2 

exp(−ϕ‖si – sj‖), where θ = {σ2, τ2, ϕ} which arises from the popular Matérn class with the 

smoothness parameter ν = 1/2 (see, e.g., Stein (2012)).

To fit GP models in every subset, we assign a noninformative prior to β0. τ2 and σ2 are 

assigned an IG(2, 1) prior (mean is 1). The spatial decay parameter ϕ is assigned a U(0.3, 

300) which corresponds to a slow decay in spatial correlation and a strong spatial signal in 

the simulated data, given that the maximum distance between any two observations is 1.4.

One important ingredient of the SMK is partitioning the dataset into subsets. Consequently, 

we have explored different partitioning schemes for the dataset to assess their impact on the 

inference. For example, we have investigated the SMK by partitioning the domain into 

disjoint sub-domains followed by choosing each subset consisting of observations from 

these sub-domains. This, however, is inefficient because many sub-domains are not 

representative of the full dataset and there is the risk of incorrectly estimating the process 

parameters from the sub-domains. This scheme also does not work well for block-

independent models. The Treed-GP model attempts to circumvent this problem by averaging 

over the partitions. This improves inferential performance with regard to estimation but 

posterior predictive inference at arbitrary locations is still complicated.

The GM, hence SMK, tends to be more robust to partitioning schemes and one need not 

average over partitions. However, simply partitioning the data according to sub-regions may 

still be unwise. Instead, we adopt a random partitioning scheme that proceeds as follows

• Draw 𝒮1, the first subset, randomly from the full data (denoted by 𝒮).

• For k = 2, …, K, draw 𝒮K, the kth subset, randomly from 𝒮 − ( ∪i = 1
k − 1 𝒮i).
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The random partitioning (RP) scheme creates subsets with points from every subregions of 

the domain. Alternatively, one can cluster N points to K different clusters using the k-means 

clustering and use each of these clusters as a subset. Later we demonstrate that this k-means 

clustering (KM) of locations into subsets leads to inferior inference than SMK fitted on 

subsets constructed with the random partitioning scheme. A more sophisticated approach 

would be to partition the domain into sub-domains and include representative samples from 

each sub-domain in a subset. We refer to this partitioning scheme as random-block 
partitioning (RBP) and show its indistinguishable performance with random partitioning. All 

these evidences with brief discussions are provides at the end of Simulation 1.

To demonstrate the SMK for various choices of the number of subsets (K) under the random 

partitioning scheme, we experiment with K = 3, 6 and 10 subsets of the data with n = 1000, 

500 and 300 observations in each subset respectively.

Table 2 shows point estimates of the parameters along with their 95% credible intervals for a 

representative simulation. While true values of β0 and τ2 are always contained within the 

95% credible intervals for all of the parameters, σ2 and ϕ estimates in SMK-GP are also 

found to be consistent with the full Gaussian process. As expected, computation time for 

SMK-GP is much smaller than both GP and CSC.

In terms of surface interpolation, Figure 1 shows, not surprisingly, that the performance of 

SMK-GP improves by reducing the number of subsets. Clearly, in surface interpolation, the 

full Gaussian process sets the benchmark. It is observed that the estimated spatial surface 

from SMK-GP with K = 3 subsets is indistinguishable from the surface obtained using the 

full Gaussian process, barring some negligible smoothing effects.

Predictive performance of the different approaches are compared using mean squared 

prediction error (MSPE), length and coverage of 95% predictive intervals. Figure 2 

demonstrates similar coverage with narrower predictive interval for SMK-GP with K = 3 

compared to K = 10. It is also observed that naively combining subset posterior inferences 

using BISP leads to significantly higher MSPE. In terms of MSPE, SMK-GP demonstrates 

almost indistinguishable performance with full GP, CSC and other approaches such as laGP 

and LK. Additionally, SMK-GP exhibits slightly higher predictive coverage with slightly 

wider prediction intervals than the full GP, CSC and laGP. On the other hand, LK shows 

severe under-coverage (not shown) with narrower predictive intervals. In fact, the average 

length and coverage of 95% predictive intervals for LK is given by 0.63 and 0.52 

respectively. The under-coverage of LK is perhaps caused due to using asymptotic predictive 

interval.

We demonstrate through Figure 3 that for all three cases (K = 3, 6, 10), substantial reduction 

in MSPE is achieved by the meta posteriors as compared to subset posteriors. This is 

expected since the meta posterior is centered closer to the full un-approximated posterior 

than the individual subset posteriors. Finally, Figure 4 presents MSPE, length and coverage 

of 95% predictive intervals for SMK-GP corresponding to random partitioning, random 

block partitioning and k-means clustering of points in the construction of subsets, as 

described before. The figure suggests identical performance for random partitioning and 
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random block partitioning, while k-means clustering shows inferior performance. Intuitively, 

both random partitioning and random block partitioning lead to subset posteriors which are 

noisy approximations to the full posterior. On the contrary, k-means clustering of points 

constructs subsets which are not represented by points from the entire domain. Henceforth 

we stick to the random partitioning scheme and present all subsequent results based on it.

Simulation 1 thus presents a convincing case about the ability of SMK-GP to act as a 

computationally convenient approximation to the full GP. The next section strengthens our 

argument further using simulations with much larger sample sizes.

Large Simulation Studies

Simulation 2

While Simulation 1 compares SMK-GP with the full Gaussian process, we shall ultimately 

be interested in assessing the performance of SMK-GP in large data settings that prohibit 

fitting full Gaussian processes. Accordingly, Simulation 2 generates 41, 000 observations 

from the Gaussian processes with an exponential correlation kernel, of which N = 40, 000 

are used for model fitting, and the rest for prediction. Following the general SMK algorithm, 

training data with N samples are divided into K non-overlapping subsets of equal size with 

Gaussian process models fitted to each subset. Choice of prior distributions on ϕ, τ2, σ2, β0 

are kept similar to Simulation 1.

To study the performance of SMK-GP with respect to the number of subsets, SMK-GP's 

architecture is employed with K = 20, 25, 40. Table 3 presents the posterior median along 

with 95% credible intervals for all parameters for a representative simulation. SMK-GP 

delivers accurate point estimates of parameters with 95% credible intervals containing the 

true parameter values except ϕ. This is not entirely unexpected, given that ϕ is weakly 

identifiable. Also, unsuprisingly, the credible intervals are a little wider for K = 40 than K = 

20. The range parameter shows a little underestimation which is not entirely surprising as ϕ 
is weakly identifiable. Most importantly, SMK-GP approximation to the full GP is able to 

deliver full Bayesian inference for 40, 000 observations within a few hours, which otherwise 

would have taken a month for the full GP without the SMK approximation.

A comprehensive study of predictive inference for SMK-GP along with BISP, laGP and LK 

is presented in Figure 5. Consistent with our earlier findings, SMK-GP performs 

significantly better than BISP with regard to MSPE. The laGP and LK approaches perform 

little better for point prediction although SMK-GP is competitive. As discussed before, 

SMK-GP credible intervals tend to be slightly wider than laGP resulting in marginally 

higher coverage. BISP exhibits marginally lower coverage while LK suffers from severely 

lower coverage. Similar to Simulation 1, subset posteriors are found to provide significantly 

higher MSPE than the meta-posterior, but we omit this analysis here.

SMK on Gaussian Processes with Compactly Supported Correlations (CSC)

We now turn to SMK on Gaussian processes with compactly supported correlation 

functions, referred to as CSC. Investigating the computationally convenient SMK 

approximation of CSC, referred to as SMK-CSC, is significant for multiple reasons. 
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Employing Gaussian processes with compactly supported correlation functions is common 

practice in many real life applications pertaining to the environmental and geological 

sciences. Additionally, Kaufman et al. (2008) argue that Gaussian processes specified with 

the Matérn class of covariance functions (see Stein (2012)) can be well approximated by a 

certain class of computationally convenient alternative Gaussian processes with compactly 

supported correlation functions. Such an edge in terms of computation for CSC over GP 

disappears for large sample sizes primarily due to evaluating determinants of large N × N 
covariance matrices. Therefore, it is important to investigate if a fast approximation to the 

CSC can emerge from the spatial meta kriging approach. We fit a CSC in data subsets in 

different processors and combine subset posteriors using Algorithm 1 to compute the meta 

posterior. To carry out posterior inference in each subset, prior distributions similar to 

section 3.4.1 are assigned to the parameters of interest {β0, ϕ, τ2, σ2}. As a tapering kernel, 

the popularly used Wendland tapering kernel (Wendland, 2004), 

κδ(s, s′) = 1 − s − s′
δ +

4
1 + 4 s − s′

δ  is employed, where δ is a tuning parameter that 

controls the sparsity of the covariance matrix and is chosen depending on the computational 

architecture available to the user. For our analysis, δ = 0.1 is chosen, which yields ~ on an 

average 8% nonzero entries in the dispersion matrix in each subset.

Similar to Section 3.4.1, we find that the meta posterior for tapered GP demonstrates ~ 30–

40% improvement in MSPE over subset posteriors. The range of MSPE for subset posteriors 

is (0.37,0.44), (0.43,0.52) and (0.46,0.55) for K = 20, 25, 40, respectively. This indicates that 

the meta posterior for CSC concentrates significantly better than subset posteriors. 

Parameter estimates along with their 95% credible intervals are presented in Table 4. All 

parameters are correctly estimated with their 95% credible intervals covering the truth. 

Additionally, Figure 6 shows that the residual spatial surfaces for SMK-CSC quite 

accurately reconstruct the true spatial surface. Interestingly, even with increasing K, surface 

interpolation for SMK-CSC deteriorates minimally. One explanation might arise from the 

fact that the data generated from CSC has minimal long range dependence that facilitates 

better performance of SMK-CSC. Similar to Section 3.4.1, SMK-CSC achieves proper well 

calibrated prediction by maintaining predictive uncertainty little over 95% as observed in 

Figure 7. The MSPE, length and coverage of 95% predictive interval for laGP are given by 

0.22, 1.80 and 0.94 respectively. Thus, laGP and SMK-GP show the same performance in 

terms of point prediction, while SMK-GP has more coverage with a wider predictive 

interval.

SMK on Gaussian Process Data with Gaps

Given that laGP turns out to be very competitive to SMK, it would be interesting to observe 

performances of SMK-GP with laGP when the data have large gaps and both SMK-GP and 

laGP might not be able to provide good approximation of the Gaussian process covariance 

function. It remains to be seen that how much the performance suffer for these two 

competing methods in terms of kriging.

For this simulation, we generate a set 41, 000 locations on the domain (0, 1)2 with half the 

locations in (0, 0.3) × (0, 1) and the remaining half in (0.7, 1) × (0, 1). This creates a large 
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gap in the middle where there is no data. Out of these 41, 000 points, 40, 000 are used for 

model fitting and the rest for predictive inference. Table 5 shows true parameter values with 

95% credible intervals for SMK-GP fitted with K = 20, 25, 40 subsets. The parameter 

estimates turn out to be satisfactory except for the range parameter ϕ, which understandably 

exhibits underestimation. The estimated response surfaces for laGP and SMK-GP presented 

in Figure 8 demonstrate over-smoothing. However, in terms of point prediction, SMK-GP 

performs little better than laGP.

Computation time—Further, to study the effect of the number of subsets on the predictive 

performance of the meta posterior and the computational advantages they fetch, computation 

times for SMK-GP are provided for every simulation study. With parallel implementation of 

subset GPs in different processors, one needs to evaluate the subset likelihood for the 

Metropolis step in every processor. The metropolis step in every processor requires a 

Cholesky decomposition of an N
K × N

K  matrix involving O N
K

3
 flop counts. It is a well 

known fact that the computational complexity of GP regression per iteration is dominated by 

this term. Thus, with a parallel implementation of the algorithm, the computational 

complexity is given by O N
K

3
. Even if the entire computation is performed in one 

processor, the computational complexity for the entire data is given by O K N
K

3
. Clearly, 

the number of subsets K plays a central role in controlling the computational complexity. 

Ideally, the choice of K is decided depending upon the computational architecture so as to 

keep the computation fast without losing much performance accuracy. Depending on the 

available computational resources, the natural idea would be to vary K slowly with N, i.e. K 
~ Nc, for some 0 < c < 1. This leads to a computational complexity of O(N3−3c) for each 

subset. Additionally, SMK-GP frees the storage of the N × N covariance matrix in the 

memory and requires storage of K N
K × N

K  matrices. Indeed with K = Nc, SMK-GP reduces 

storage complexity from O(N2) down to O(N2−2c). Finally, it is to be mentioned that the 

computational complexity of the SMK framework is dependent upon the computational 

complexity of the model fitted to each subset. Complexity of computation in each subset can 

be substantially mitigated by fitting a fast nearest neighbor or a multiscale approach to each 

subset. In fact, SMK framework applied to such models may dramatically reduce the 

computational complexity, even to the point of being sub-linear in N. We propose to pursue 

this in a future article.

Analysis of Sea Surface Temperature Data

An important ecological issue concerning our planet is climate change. It is generally 

accepted that the earth's climate will change in response to radiative forces induced by the 

changes in atmospheric gases, cloud temperature, sea surface temperature, water vapor, 

aerosol (liquid and solid particles suspended in the air), among others. Developing 

conceptual and predictive global climate models to accurately assess climate and potential 

climate changes are of major interest in recent years. Of particular interest is the collection 

of sea surface temperature data (in Centigrade). This is important for tropical cyclogenesis 

as well as for studying the formation of sea breezes and sea fog and for calibrating 
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measurements from weather satellites. For a long time, sea surface temperature data from 

ocean samples has been collected by voluntary observing ships, buoys, military and 

scientific cruises. In the early days, interest resided mainly in the mean climatological state 

of the ocean so as to understand the flow and distribution of water streams. As 

climatological research started to emerge, another important requirement became 

quantifying the variability around the mean in spatial and temporal scales. A number of 

articles have appeared in order to address this issue in the recent years, see e.g. Higdon 

(1998), Lemos and Sansó (2009), Lemos and Sansó (2006), Berliner et al. (2000).

In this article, we consider the problem of capturing the spatial trend and characterizing 

anomaly (uncertainty) in the sea surface temperature (SST) in the West coast of mainland 

USA, Canada and Alaska, between 30° − 60° N. latitude and 122° − 152° W. longitude. The 

dataset has been obtained from NODC World Ocean Database 2016 and we use data 

collected in the month of October for all the spatial locations. Note that SMK implemented 

with Gaussian process does not possess any temporal component, and so data collected in 

the same month across the domain is used for the analysis. We perform screening of the data 

to ensure quality control and then choose a random subset of 120, 000 spatial observations 

over the domain of interest. Out of the total observations, about 98%, i.e N = 117, 600 

observations are used for model fitting and the rest are used for prediction. The domain of 

interest is large enough to allow considerable spatial variation in SST from north to south 

and provides an important first step in extending these models for the analysis of global 

scale SST database.

The plot of the sea surface is provided in Figure 9(b). As expected, the plot reveals a clear 

trend of decrease in the sea surface temperature with increasing latitude. Thus, sea surface 

temperature data possesses inherent directional anisotropy that makes fitting ordinary 

Gaussian process model with stationary covariance kernel unreasonable. Consequently, we 

add latitude and longitude as linear predictors to each subset while fitting the SMK-GP. To 

justify our approach, a non-spatial model with latitude and longitude as linear predictors is 

fitted and surface plots of ordinary least square (OLS) residuals are presented in Figure 9(c). 

No clear anisotropic pattern emerges from Figure 9(c). Further, the empirical semivariogram 

(see Figure 9(a)) of the OLS residuals confirms nearly isotropic behavior of the spatial 

covariance function.

For spatial GP models, the full posterior distribution cannot be obtained in closed form. 

Thus before fitting the full spatial SMK-GP, we turn our attention to the non-spatial 

conjugate Bayesian linear model (1) that yields closed form joint posterior distributions for 

(β, σ2) belonging to the NIG family of distributions. It is instructive to see the accuracy of 

approximation offered by meta posterior of β in comparison with the exact posterior 

distribution of β from the non-spatial NIG model on this dataset. Similar to Section 3.1, the 

sea surface temperature dataset is divided into 40 subsets and exact posterior quantiles from 

each component of β is plotted (see Table 6) with corresponding posterior quantiles from the 

meta posterior. The quantiles from the exact and meta posterior are found to be 

indistinguishable for any practical purpose. However, the tail of meta posterior is little more 

spread out than the tail of the full posterior with large number of subsets. Quantiles in both 

extremes tend to match for full and meta posterior as the number of subsets decreases. Next 
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we move to the more complex spatial analysis of the data and judge performance of meta 

posterior when the Gaussian process model is fitted to each subset.

Memory in our workstation was insufficient to store the N × N distance matrix to run the full 

GP model and the tapered Gaussian process model. Other popular methods such as the treed 

Gaussian process on the full data takes a long time to run and is deemed impractical as a 

competitor for the dataset of interest. Subsequently, we fit SMK-GP and BISP for various 

choices of K. Additionally, laGP and LatticeKrig are fitted as competitors of SMK to study 

predictive inference. For brevity, results of SMK-GP are presented for K = 40 and K = 60 

subsets.

All spatial locations are transformed to lie in [0, 1] × [0, 1] intervals for our analysis. For all 

the competing models, the intercept is assigned a flat prior and τ2 and σ2 are assigned an 

IG(2,1) prior. The spatial range parameter is assigned a U(0.3, 300) prior that ensures huge 

support given that the transformed coordinates belong to [0, 1] × [0, 1] domain. Parameter 

estimates along with their estimated 95% credible intervals for SMK with K = 40 and 60 are 

presented in Table 7. Both of them yield high estimates of the signal to noise ratio σ2

τ2 , which 

suggests a sophisticated spatial model to capture looming spatial dependence of the sea 

surface temperature.

Predictive power of the proposed architecture, along with the other approaches, is assessed 

based on MSPE, coverage and length of 95% predictive intervals. The non-spatial model, 

SMK-GP with K = 60 and SMK-GP with K = 40 yield MSPE 1.31, 0.13 and 0.11 

respectively. Such dramatic improvement in MSPE for spatial models (shown in Table 8) 

corroborate the strong spatial story inherent in the data. Further, Table 8 demonstrates about 

30% improvement in terms of mean squared prediction error for SMK over BISP. 

Additionally, BISP suffers from a little under-coverage, presumably due to simplifying the 

correlation structure among different subsets that fails to capture complex spatial 

association. laGP and SMK-GP demonstrate almost indistinguishable performance in terms 

of MSPE but vary in characterizing predictive uncertainty. LatticeKrig turns out to be the 

superior performer in terms of point prediction, but suffers heavily in characterizing 

predictive uncertainty. Overall, SMK-GP positions itself as a competitive performer in 

predictive inference. Predictive surfaces in Figure 9 further corroborate this fact. 

Importantly, the in-built parallel structure in SMK leads to full Bayesian inference and 

prediction in approximately 4 hours and 10 hours (with parallel implementation) for K = 60 

and 40 partitions respectively. Fitting SMK-GP beyond K = 40 unnecessarily exacerbates 

computational burden with minimal improvement of inferential and predictive performance.

Conclusion and Future Work

This article has developed a practical approximation to Bayesian spatial inference for “big-

N” problems. We propose dividing big datasets into multiple subsets, carrying out 

independent inference in each subset followed by combining inference from all subsets. The 

entire procedure is “trivially parallelizable”, offers rapid computation for big data and also 

eliminates the need to store the entire dataset in one processor. The approach seems to 
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accrue dramatic gains in computation and storage and offers inference essentially 

indistinguishable from full Gaussian process models and other competitive approaches for 

big spatial data. Further, SMK provides a generic “divide and conquer” algorithm that is 

potentially applicable to any spatial process model for data subsets. For example, SMK can 

be applied to scalable Gaussian process models, such as predictive processes and nearest-

neighbor Gaussian processes, to considerably enhance gains in computation and storage.

This article introduces and implements SMK for stationary Gaussian processes and tapered 

Gaussian processes. We demonstrate competitive predictive performance of SMK-GP with 

state-of-the-art models. Unlike many other state-of-the-art models, SMK-GP provides full 

scale Bayesian inference and that too within manageable time. The potential of SMK-GP or 

SMK-CSC are best understood by acknowledging the fact that these are fast and accurate 

approximations of stationary GP or CSC for big data.

Our detailed investigation indicates laGP as an important competitor to SMK-GP. While in 

some simulations laGP excels over SMK-GP, there are simulations presented in Section 

3.4.2 and 3.4.3 where SMK-GP performs better or competitive with laGP. It is also worth 

mentioning that in a recent article (Heaton et al., 2017) that compares performances of 

several spatial big data methods, SMK-GP seems to outperform laGP in terms of point 

prediction in a simulation study. However, it is difficult to identify clear situations where one 

may be preferable to the other. Preference, perhaps, will depend upon the type of inference 

sought. For example, SMK-GP may have benefits in terms of ease of implementation when 

partitioning the data is convenient, one seeks full Bayesian inference comprising parameter 

estimation, spatial interpolation and prediction of outcomes. laGP, on the other hand, will 

likely be preferred for its fast and efficient emulation of Gaussian process surfaces and high-

dimensional functions in computer experiments.

The current article is but a first look at SMK and there are several avenues of related 

research still to be explored. For example, our current investigations have been restricted to 

stationary processes only and it remains to explore SMK’s effectiveness for nonstationary 

models. A potential concern with the current specification of SMK is that if the underlying 

spatial process has substantial non-stationary local behavior, then the subset posteriors are 

likely to miss important local behavior if samples are sparsely drawn from each subset and 

this will lead to the SMK missing some local nonstationary features as well. While one can 

increase the number of data points in each subset to improve SMK’s performance, this will 

detract from the computational gains and perhaps preclude applying SMK to infer from 

massive datasets exhibiting nonstationary behavior. Some of our ongoing research comprises 

extending SMK to deliver full Bayesian inference for a dataset with 2 million observations 

and having significant local nonstationarity. The extension also allows us to match a few 

prefixed quantiles of parameters in the “meta posterior” with the corresponding quantiles of 

the full posterior. Thus, uncertainty characterization is found to be more precise with the 

proposed extension to SMK.

Other avenues of future research could include more elaborate and comprehensive 

comparisons with alternate subset aggregation methods such as consensus Monte Carlo 

(Scott et al., 2016) when applied to spatial process models. It is also of interest to adapt 
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SMK for large scale spatio-temporal spatial models. We intend to explore the possibility of 

scalable inference in two different situations: (a) when spatio-temporal interpolation is 

sought at discrete time-points (e.g., monthly or yearly data), and (b) when spatiotemporal 

interpolation is sought at arbitrary locations and timepoints. It remains an important question 

as to how one should partition spatio-temporal data for SMK to capture both spatial and 

temporal associations. Ongoing research is also extending SMK to multivariate spatial data 

analysis using meta-posteriors derived from multivariate spatial process models. We 

anticipate reporting on these in the near future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Residual spatial surface for: (a) synthetic spatial random effect generated using 3,000 

observations; (b) full Gaussian process; (c) CSC; (d) estimated spatial random effects for 

meta posterior with K = 3; (e) estimated spatial random effects for meta posterior with K = 

6, and (f) estimated spatial random effects for meta posterior with K = 10.
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Figure 2. 
Plot at the top indicates boxplot of mean squared prediction error for all competitors over 25 

replications. Second and third plots show coverage and length of 95% predictive intervals 

for the competitors over the same replications. LatticeKrig shows extreme undercoverage 

compared to the others and is not presented alongside the others.
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Figure 3. 
Plots the MSPE calculated from subsets for one representative simulation. Blue, golden and 

red colors represent subset MSPE values for K = 3, 6, 10 subsets respectively. 

Corresponding MSPEs from meta posteriors are provided in the solid, dotted and dashed 

lines respectively.
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Figure 4. 
MSPE, coverage and length of 95% predictive intervals for SMK-GP with random 

partitioning (RP), random block partitioning (RBP) and K-means clustering (KM) scheme of 

subsetting.
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Figure 5. 
Plot at the top indicates boxplot of mean squared prediction error for all competitors over 25 

replications. Second and third plots show coverage and length of 95% predictive intervals 

for the competitors over the same replications. LatticeKrig shows extreme undercoverage 

compared to the others and is not presented alongside the others.
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Figure 6. 
Residual spatial surface for: (a) synthetic spatial random effect generated using 40,000 

observations using CSC; estimated spatial random effects for meta posterior with CSC fitted 

in each subset for (b) K = 20; (c) K = 25, and (d) K = 40.
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Figure 7. 
Figures present MSPE, length and coverage of 95% predictive intervals for SMK-CSC with 

different number of subsets. SMK(20), SMK(25) and SMK(40) stand for SMK-CSC with 

20, 25. 40 subsets respectively.
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Figure 8. 
Predicted surface for: (a) synthetic response surface generated using 40,000 observations 

using GP; estimated response surface for meta posterior with GP fitted in each subset for (b) 

K = 20; (c) estimated response surface for laGP.
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Figure 9. 
Figure 9(b) shows the plot of the sea surface temperature data. Estimated OLS residual from 

the non-spatial model is presented in Figure 9(c). Figure 9(a) presents the empirical 

semivariogram for OLS residuals. Figures 9(d) and 9(e) show estimated residual spatial 

surfaces for SMK-GP fitted with K = 40 and K = 60 respectively. Figures 9(f), 9(g) present 

interpolated surfaces for laGP and LatticeKrig respectively. x and y axes in every figure 

represent Longitude and Latitude in the scale of [0,360] and [0,90] respectively.
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Table 3

Parameter credible intervals, 50 (2.5 97.5) percentiles for all the parameters. SMK with Gaussian process is 

fitted for K = 20, 25, 40 number of subsets.

Parameter True value

SMK (Gaussian Process)

20 25 40

β0 1 0.28 (−1.96, 2.39) 0.28 (−2.02, 2.33) 0.29 (−1.99, 2.70)

τ2 0.10 0.09 (0.08, 0.10) 0.09 (0.08, 0.11) 0.09 (0.08, 0.11)

σ2 2 1.45 (0.65, 2.33) 1.43 (0.62, 2.49) 1.51 (0.63, 3.12)

ϕ 3 1.35 (1.31, 1.64) 1.36 (1.26, 1.70) 1.37 (1.32, 1.80)

time (in min) – 260.40 216 64.8
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Table 4

Parameter credible intervals, 50 (2.5 97.5) percentiles for all the parameters. SMK with Gaussian process is 

fitted for K = 20, 25, 40 number of subsets.

Parameter True value

SMK (CSC)

20 25 40

β0 1 0.91 (0.74, 1.08) 0.90 (0.73, 1.08) 0.91 (0.72, 1.09)

τ2 0.10 0.09 (0.06, 0.12) 0.09 (0.08, 0.11) 0.10 (0.06, 0.14)

σ2 2 1.87 (1.67, 2.10) 1.43 (0.62, 2.49) 1.88 (1.66, 2.13)

ϕ 3 3.38 (1.88, 5.40) 1.36 (1.26, 1.70) 3.23 (1.34, 5.55)

time (in min) – 218.72 178.36 52.42
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Table 5

Parameter credible intervals, 50 (2.5 97.5) percentiles for all the parameters. SMK with Gaussian process is 

fitted for K = 20, 25, 40 number of subsets. The domain has a gap in the middle with no data points.

Parameter True value

SMK (Gaussian Process)

20 25 40

β0 1 0.76 (−0.99, 2.56) 0.80 (−1.06, 2.69) 0.78 (−1.11, 2.72)

τ2 0.10 0.09 (0.09, 0.10) 0.09 (0.08, 0.11) 0.09 (0.08, 0.11)

σ2 2 1.23 (0.59, 2.04) 1.27 (0.62, 2.11) 1.24 (0.61, 2.08)

ϕ 3 0.69 (0.40, 0.96) 0.66 (0.40, 0.92) 0.68 (0.36, 0.88)

time (in min) − 260.40 216 64.8

laGP SMK (Gaussian Process)

MSPE 0.12 0.11 0.11 0.11

Coverage of 95% PI 1.23 1.34 1.34 1.37

Length of 95% PI 0.93 0.97 0.96 0.96
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Table 7

Parameter credible intervals, 50 (2.5 97.5) percentiles for all the parameters. SMK with Gaussian process is 

fitted for K = 40, 60 number of subsets

SMK (Gaussian Process)

Parameter K = 40 K = 60

β0 23.98 (18.66, 28.27) 23.93 (19.04, 28.80)

β1 −4.95 (−9.03, 0.16) −4.84 (−8.75, 0.10)

β2 −14.33 (−17.41, −10.17) −14.18 (−17.09, −11.32)

τ2 0.11 (0.08, 0.13) 0.09 (0.07, 0.12)

σ2 12.33 (8.39, 16.95) 10.56 (7.24, 15.98)

ϕ 0.37 (0.30, 0.91) 0.38 (0.30, 0.88)

time (in min) 643.2 213
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